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Exact closed-form solutions are exhibited for the Hopf equation for stationary 
incompressible 3D Navier-Stokes flow, for the cases of homogeneous forced flow 
(including a solution with depleted nonlinearity) and inhomogeneous flow with 
arbitrary boundary conditions. This provides an exact method for computing 
two- and higher-point moments, given the mean flow. 
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1, I N T R O D U C T I O N  

"It is commonly accepted that turbulent flow is necessarily statistical in 
nature. Hopf formulated an equation governing the probability function for 
such flows, (1) but so far no genuinely physical explicit solutions have been 
obtained.... ''(2~ Thus, despite the fact that the Hopf approach has been 
characterized by some as "the most compact formulation of the general 
turbulence problem ''(3~ and even "the only exact formulation in the entire 
field of turbulence, ''(4) its actual usefulness in predicting statistics has until 
now been extremely limited by the lack of explicit solutions. By applying 
the Navier-Stokes equation to the moment-generating functional for the 
velocity, the Hopf approach transforms a nonlinear differential equation 
describing a single flow realization to a linear functional-integrodifferential 
equation governing an ensemble of flows. However, in the absence of a 
general method for solving such equations, results have until now been 
mostly of a formal nature. (5'6) 

1 Center for Turbulence Research, NASA-Ames/Stanford University. 
2 NASA-Ames Research Center. 
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It is our purpose here to exhibit explicit solutions of the stationary 
Hopf equation and begin to explore their computational possibilities. The 
motivation is to circumvent the infinite hierarchy of coupled equations for 
the velocity moments and obtain an exact closure of the steady-state 3D 
Navier-Stokes equations, without modeling assumptions or truncation. In 
Section 2, we review the Hopf formulation of the Navier-Stokes equation. 
In Section 3.1, we display and discuss a stationary homogeneous solution 
for 2D flow. In Section 3.2, we show how depletion of nonlinearity may 
arise for 3D forced homogeneous flow. Section 3.3 considers the general 3D 
forced case, while Section 3.4 derives a method for closing the 3D unforced 
equations with arbitrary boundary conditions. We conclude with future 
plans. 

2. REVIEW: HOPF EQUATION 

Recall ~1) the definition of the Hopf functional 

<ex  (;;L (2.1) 

Its input is an arbitrary nonrandom time-independent "conjugate," 
"dummy," or "test" function f(x); the values of f at all x are required. The 
output is a number independent of x, namely, the ensemble average (over 
the velocity field u(x) at all points, with probability density functional 
P[u(x)])  of the quantity within the brackets. 

If one defines the functional derivative 

6~[f (x) l  

~f j (x ' )  t (2.2) 

(which depends upon x', but not x; j is a unit vector), then one may 
readily verify that 

[ a,PEf(x)]] 
Jf=o = <(i) u;(x') >, 

E 62~[f(x) ] bfy(x) 6fk(X')3f= o = ((i)2 Uj(X) Uk(X')> 

(2.3) 

etc. This arises from identities such as 

lim{eXp[ie~dxuj(x)6(x-x')] -1 } 
e ~ O  8, 

= (i) u j (x ' )  (2.3') 
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In other words, q~ is the characteristic functional or moment-generating 
functional for the velocity field u(x), containing all equal-time statistical 
information about u(x). Intermittency is included in this description insofar 
as it can be captured in the higher moments of velocity. 

If one defines the inverse functional Fourier transform 

where the outer integral is over all values of f evaluated at all points in 
space x, then one may verify that @Iv(x)] is just the probability density 
functional P[v(x)]  for the velocity field v(x). This result is expected 
because, for discrete x, the functional derivative and functional Fourier 
transform reduce to the conventional partial derivative and multivariable 
Fourier transform, respectively. Furthermore, as desired, the result does 
not depend on v being independent at different points x, i.e., it does not 
require P to factor into a product of probability distributions for v at 
each x. 

The time evolution of 45 is given by 

where Otu is given by the Navier-Stokes equation. Now f may be decom- 
posed ~3) into two components, namely, a gradient term Vg and a remainder 
~. These two components will be orthogonal functions in the sense that 
S dx ~. Vg = 0 if f is chosen to be solenoidal and have vanishing normal 
component at the boundary (as one may verify by integrating by parts). 
But these are just the conditions satisfied by u. Hence S dx u. Vg = 0 and f 
may be replaced by f in all of the above equations. The advantage of this 
replacement is that it eliminates the pressure contribution to Eq. (2.5). 
Also, because f is solenoidal, the number of independent scalar fields which 
comprise it has been reduced from 3 to 2. 

The equation of motion then becomes 

O, lexp(if dxf'u)l=lif dx~'O,uexp(if dxf'u)l (2.6) 

(2.6') 
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which, using Eq. (2.3), becomes the Hopf equation: 

#t axk 6f, 6~ 6f-// 

where repeated indices are summed over and the f ' s  are understood as 
having the argument x unless otherwise noted. 

3. RESULTS 

3.1. S teady-Sta te  Solut ions 

To find steady-state solutions, let us rewrite this equation as 

Note that the expression inside the parentheses is essentially the kernel for 
a "wave" equation in which fk and xg play the role of position and time, 
respectively. Hence we will have stationarity if, for example, 

, o  ) 
~_  = Gj x - dx' f(x') (3.2) 
~f~ 

where Gj is an arbitrary function and the integral is over all space. 
The first term inside the parentheses is acted upon by the viscous term 

of the Navier-Stokes equation, while the second term inside the 
parentheses is acted upon by the convective term. The steady-state balance 
between the two terms corresponds (in the parlance of a harmonic- 
oscillator formulation (v) of the Navier-Stokes equations) to a state in 
which creation and annihilation processes balance, i.e., an oscillator at its 
apogee or perigee. (This condition of balance distinguishes our solution 
from the Lewis and Kraichnan (8) solution of the Hopf equation for the 
time-dependent but linearized Navie~Stokes equation.) This particular 
solution can only take on physical significance after we specify some 
explicit external forcing and/or boundary conditions which can input 
energy. Until then, it [-and its generalization (3.5)] may be viewed as useful 
paradigms for more realistic solutions, to be discussed in later sections. 

More generally, 

f v.,x,) ,33, 
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satisfies the steady-state Hopf equation. However, by the construction of f, 
the second term inside the parentheses vanishes unless one restricts oneself 
to flows in which the pressure gradient may be neglected in the equations 
of motion (which would be the "opposite" of inviscid Beltrami flows in the 
sense that the gradient of kinetic energy would not be balanced by the 
pressure gradient, but by the viscous and Coriolis forces). An example 
would be 2D flow, ~ in which the equation of motion (as derived from the 
vorticity equation) for the joint velocity-vorticity characteristic functional 

( )) 05[f(x) ,g(x)] -  exp i d x f ( x ) - u ( x ) + g ( x ) - o ( x )  
- - o 0  

(3.4) 

has neither pressure gradient nor vortex-stretching terms. Its steady-state 
first functional derivative would then be given by 

605_ G i VH(x'))  (3.5) •gj J(vH(X)-f dx'f(x')" 

An analogous result would hold for a passive diffusing scalar advected by 
a steady flow field. Equation (3.3) would also constitute a steady-state 
solution of the Hopf equation for the one-dimensional fluid (Burger's 
equation). 

The possibility of attractors (e.g., soliton or shocklike solutions) for 
our functional "wave" equation would be intriguing, since attractors at 
f = 0  would correspond to stable statistical solutions. However, because 
the Hopf equation for Navier-Stokes is linear in 05 and nondispersive 
(constant functional "group" velocity), there does not appear to be any 
mechanism for steepening or evolution of wavefronts and stability must be 
determined by other means. 

One could in principle perform a functional integration upon (3.3) or 
(3.5) to obtain 05. However, for computational purposes it is easier to work 
directly with the first functional derivative of 05, as we will see. Note that 
the joint functional (3.4) is overcomplete in the sense that the f and g in 
(3.4) are not independent, because u and co are not independent. If they 
were independent, one could immediately integrate (3.5) to obtain 

# = I  ~ dx g(x)-G H(x)-fdx'f(x').VH(x') (3.6) 

whose velocity moments would all vanish, contrary to reality. Alter- 
natively, working in k space, one may verify that functional derivatives 
with respect to ]'(k) are equivalent to those with respect to ik x fg(k). 
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For the particular choice 

H(x) = exp(ik �9 x) 
(3.7) 

Gj(x) = aj In x 

the statistics generated by q~ turn out to be homogeneous in space. To see 
this, consider 

~ =  ~m (amj\vkmj/~ln [exp(i!m "x) f x ' ) l  (3.8) - : dx' f(x') �9 exp(ikm " 

Then, taking one more functional derivative, we obtain 

62q~[f(x)] _ v, { amj'~ -kmk exp(ikm" x') 
(3.9) 

3gj(x) 3fk(x') m ~//\vkmj/ Zm(X) 

where 

Zm,x, ; xf, x, km xp ikm.) 

Hence, setting f =  0 and using Eq. (2.3) yields 

(3.10) 

(~ j  (x) uj(x') ) = ~ amj exp[ikm " (x - x')] (3.11 ) 
m 

which exhibits homogeneity. 
In order to construct velocity moments which are real, note that the 

complex conjugate of (3.8) is not a solution of (2.7), but rather of the 
complex conjugate of (2.7). However, 

~gj=~m (amj]kvkmj/in [ --exp(-- ikm �9 X ) v  - f dx '  f (x ' )  �9 km 
q 

exp( -ikm" x')[  

(3.12) 

is a solution of (2.7). Linearity allows us to choose any linear combination 
of (3.8) and (3.12) as our solution; we choose the difference between the 
two expressions, since this has the additional property that its integral with 
respect to the Fourier component of f converges. This difference solution 
has the structure function 

( ( o j ( x )  u j ( x ' ) )  = 2 ~ amj COS[kin " (x - x ' ) ]  
m 

(3.13) 

which is real, as desired. 
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We may in general add another term 

J ~  i f dx' (Cx'  + D)-  g(x') (3.14) 

to ~,  since the Hopf equation is linear in 45 and quadratic in spatial and 
functional derivatives. C is a constant matrix and D is a constant vector, 
to be determined. Then the mean vorticity becomes 

( a~2 I ( amJ ~ k m. =  (ln v ) E ,  Vkmj/ + 2 E ',Vkm/ x + C x + D  

(3.15) 

Incompressibility and the prevailing mean vorticity and vorticity gradient 
determine D and C, respectively. One may also match the homogeneous 
intensity (u  2) of the velocity fluctuations by adding a term 

J '~E f d x ' f ( x ' )  2 (3.16) 

to 05, where E is a constant. An analogous term may be added to match 
the mean square vorticity and in order to satisfy realizability (e.g., non- 
negative variance of vorticity). [Although the individual contributions 
(3.8), (3.12), (3.14), (3.16), etc., which make up the solution may not be 
realizable, their sum does constitute a realizable solution.] 

The source of energy in this case is the implicit force which maintains 
the mean vorticity profile. Hence this particular solution may be viewed as 
resembling decaying turbulence at high Reynolds number and small length 
scales (with effective forcing by the mean flow). In order to obtain a more 
satisfactory solution which achieves mathematical and physical stationarity 
(incorporating a more explicit source of energy), we modify our approach, 
as follows. 

3.2. Depletion of Nonlinearity 

Let us consider the 3D case (i.e., restore vortex-stretching to the 
equations) and add explicit external forcing F(x). If we consider the joint 
velocity-vorticity-force characteristic functional 

~[f(x), g(x), h(x)] 

= exp i dx f ( x ) . u ( x ) + g ( x ) ' o J ( x ) + h ( x ) - F ( x )  (3.17) 
- - c o  
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then the conditions that viscosity and forcing balance (implying that 
stretching and advection balance, in order to achieve stationarity) take the 
respective forms 

6q~ 6q~ 
V x Y V  2 = - V x - -  (3.18) 

fif(x) fih(x) 

V• x = 0  (3.19) 

This is a special case of general stationarity, with the "Eulerization" 
constraint that V • (u • r vanishes everywhere. Technically, this constraint 
is only weakly or statistically imposed, i.e., only its ensemble average with 
any moment of velocity is required to vanish31~ This constraint is 
motivated by a suggestion by Moffatt (H) and by recent experimental, 
numerical, and analytical work (12) indicating that decaying turbulent flows 
tend to spend a significant portion of their time in the vicinity of fixed 
points of the Euler equation, in which u x o = V(P + �89 This amounts to 
a depletion of nonlinearity, since the total nonlinear term is the solenoidal 
part of u x co. This is directly relevant to issues of turbulent drag reduction 
and coherent structures, since both can arise from reduced enstrophy 
production. 

Taking the functional derivative with respect to f(x') of Eqs. (3.18) 
and (3.19) (for x' :~x)yields 

fi2q~ fi2~ 

V • vV 2 fif(x) f i f (x ' )  - - V  • fih(x) f i f(x ' )  (3.20) 

V f 6 62q, \ 
• ~6 f -~  • fig(x) 6 f(x,) | / = 0  (3.21) 

Substituting the ansatz 

fifj(x') Gj dx B(x). f(x) + p(x). g(x) + q(x)- h(x), x' (3.22) 

(where Gj is an arbitrary functional), we obtain 

q(x) = -vV2B(x)  + VC(x) 

B(x)  • p ( x ) =  VA(x)  
(3.23) 
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where C(x) and A(x) are arbitrary. This yields 

, o  [;: [ 
,~fj(x') = Gj dx B(x)" f(x) + ~ B ( x ) -  B(x) 

IB(x)I 2 

+ [ -vVZB(x) + V C ( x ) ] "  h(x), x ' ]  

x VA(x) 1 �9 g(x) 

(3.24) 

where c~ is a scalar field 
orthogonal to VA(x). 

One may verify that 

to be determined and B(x) is chosen to be 

< u ~ ( x )  �9 u(x) > 
~(x) = <uju(x). u(x)> (3.25) 

For flow localized in a narrow range of wavenumbers about k, c~ may be 
viewed as the ratio of helicity and energy currents in k-space, since (as a 
crude estimate (13)) [O,k]/k..~ -[d,~(k)]/~(k) by incompressibility ~k~(k), 
so that ~?,(1/k)~ ~(k). Negative e, for example, would be consistent with 
opposite energy and helicity cascades/~4) One expects a to be proportional 
to the inverse of the integral length scale. 

Similarly, one may verify that 

V . C  _ <u/Fn - vV2u.) > 
V2B, (ujV2u,> (3.26) 

In order to ensure homogeneity of velocity statistics, we choose a solution 
of the form (3.22) with 

B(x) ~ b m exp(ikm " x) 

ajEz, x']=mZ ~ ln[exp(ikm'x')-z] 
(3.27) 

With this choice, homogeneity of vorticity and force statistics requires that 

= const ~ am 

A(x)~Am exp(i2km'x)  

C(x) ~ Cm exp( ikm'x)  

(3.28) 
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Hence, substituting into (3.24), the argument in the above expression is 
given by 

z=  f dx [exp(ikm" x)] {brn'f(x)+[o~mb m - 2ibm x ]---~ml2 ] " g ( x ) k m A m ]  

+ [vk2mbm + ikmCm]" h(x)} (3.29) 

where b m is chosen to be orthogonal to km. 
Given 6q~/6fj(x') satisfying (3.20) and (3.21), the functional ~b 

obtained (in principle) by functional integration satisfies (3.18) and (3.19), 
as may be seen by commuting a functional integration over ffix') back in 
through the other operators acting on 6~/6fj(x') in (3.20) and (3.21) and 
setting the arbitrary constants of the functional integration [functions 
independent of ff ix ')]  equal to zero. Hence (3.22), (3.27), (3.29) constitute 
an implicit solution of the Hopf equation and give explicit statistics. 

This leads to mean velocity 

(am,) ( u j ( x ) ) = ~  ~ (km'x) (3.30) 

One might consider adding a term of the form (2.14) (with g replaced by 
f) to qs. However, although the Hopf equation is invariant under this 
operation, the additional contributions to the mean velocity and strain rate 
are unphysical since they contain no energy [as may be verified by func- 
tional-differentiating (2.14) twice with respect to f ] .  Hence we choose to 
disregard this spurious "inhomogeneous Galilean" invariance. Applying 
incompressibility and the requirement of zero mean shear imposes seven 
further constraints upon the 5N remaining coefficients in a m and bm, where 
N is the number of wavevectors in our expansion (3.27). 

The velocity-force correlation function takes the form 

~ kmj ] (uj(x)Fs(x'))=~amj v k m + i - - C  m exp[ ikm' (X-X' ) ]  (3.31) 
m bmj 

One may compare this with the mean transfer into vector component Ej of 
the energy 

m•amj Zjnp(Uj(X) un(x' ) COp(X')) = ~ [2kmjAm] exp[-i2k m �9 ( x -  x')] (3.32) 
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(no sum over j) .  The associated autocorrelation function 

<uj(x) uj(x'))  = ~ a ,  0 exp[ikm " (x - x ')]  
m 

(3.33) 

tells us that amj= (I/2j(km)]2). From this, we see that the role of the factor 
of 2 in the exponential on the right-hand side of the nonlinear-transfer term 
(3.32) is to generate the cascade; energy initially localized in k-space 
around km will give rise to a transfer of energy to 2km, which in turn 
results in transfer to 4k m and so on. Of course, because the sum of the 
nonlinear terms vanishes for this class of flows, there is no net cascade. In 
fact, from (3.39) and (3.32), we see that transfer due to Coriolis forces 
cancels the transfer due to the gradient of the kinetic energy, implying that 
velocity and pressure gradient are uncorrelated for these flows. This 
suggests that the statistical fixed point of the forced Navier-Stokes 
equation which corresponds to the deterministic fixed point of the Euler 
equation may in fact be stable since there is no pressure-driven tendency to 
isotropize the angle between fi(k) x th(k) and k. The fixed point is statistical 
because (i) the statistics are stationary, whereas the flow field in any 
individual realization may not be, (ii) the correlation functions obtained do 
not factor as a deterministic correlation function would, and (iii) the 
"Eulerization" constraint is only imposed weakly. 

Three-point correlations may also be derived, e.g., 

amj 
(uj(x) u~(x') up(x")) = ~ 7-- bm~bmp exp[ikm" (x + x " -  2x')] 

m Omj 
(3.34) 

Symmetry then implies that 

amj=b~j (3.35) 

Writing ( x + x " - 2 x ' )  as ( x - x ' ) + ( x " - x ' ) + ( x ' - x ' )  and using 
homogeneity to translate the origin by x' yields a manifestly symmetric 
form for (3.34). Equivalently, a necessary condition for (3.34) to be 
symmetric is that x ' =  0; however, for a homogeneous system, this condi- 
tion can always be satisfied by translation. (For a more rigorous treatment 
including sufficiency, see Appendix.) Cm is constrained to vanish, as may 
be seen by computing the correlation of any product of velocities with 
both sides of the stationary Navier-Stokes equation and substituting 
(3.31)-(3.33). However, force force statistics are still undetermined; the 
external force may have an arbitrary component which is uncorrelated with 
u as well as a component satisfying (3.31), e.g., white noise. (15~ 
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3.3. Homogeneous Steady Solution with Forcing 

Let us extend this solution to the case of general balance in which 
(3.18) and (3.19) are not individually valid, but their sum is. Then (3.23) 
becomes 

q(x, x') = -vV2B(x) + VC(x) - H(x) Gj'(z, x') 
Gj(z, x') (3.36) 

B(x) x p(x) = VA(x) + H(x) 

where H(x) is not a gradient and the primes on Gj denote derivative with 
respect to z. Without loss of generality, the potential component of H(x) 
may be absorbed into the definitions of C and A. Then homogeneity 
implies that 

H(x) ~ H m exp(i2km �9 x) (3.37) 

where Hm is orthogonal t o  k m. Since by incompressibility b,~ is orthogonal 
to k m and hence to H,, [by (3.36)], we obtain that the three vectors bm,  

k,,, and H,~ form an orthogonal triad. The self-consistency requirement 
V x u --- o~ then implies that 

ikm x bm = ~mbm - bm x (2ikmAm + Hm) (3.38) 
Ib, . I  2 

This can be satisfied if 

]bm[2= 2Am (3.39) 

b,. (3.40) o~mbm = - H m X  Ibm]2 

H m . b m = 0  (3.41) 

(3.39) fixed the normalization of bin. Equation (3.40) and (3.41) are 
satisfied for nonzero ~m if o~mb m is chosen to be the vector Fourier 
coefficient at "wavevector" iHm/O~ m ( H  m chosen such that Hm/O~ m is 
imaginary) of any hypothetical incompressible Arnold-Beltrami-Childress 
flow v(r) with V x v(r) = 2AmY(r). 

H plays the roll of a rotational stirring force; the number of nonzero 
coefficients I--Im/~rn is a measure of the nonlinearity of the flow, i.e., 
deviation of the flow from the case of fully-depressed nonlinearity in which 
u(x)xco(x)=VA(x) .  If all of the H m vanish, we recover the balance 
discussed in the previous section, in which Am is given by (3.39) and 
a m = 0. 
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'The nonlinear transfer (3.32) now becomes 

, amj  ejnp{uj(x) un(x ) cop(x')> : ~  ~ [2kmjA,,,- iH,,,j] exp[i2km "(x - x')] 

(3.42) 

k,,, is constrained to be orthogonal to Hm and b,~. Equations (3.22), (3.27), 
and (3.29) with the right-hand side of (3.38) replacing the corresponding 
expression in (3.29) then constitutes a homogeneous, stationary, incom- 
pressible, and self-consistent closed solution of the Hopf equation [if there 
exists a force F(x) which gives rise to homogeneous stationary flow]. 

In the absence of homogeneity (but with forcing), Eq. (3.38) is 
replaced by the condition (3.24) with the modification that H is added onto 
VA, where 

B satisfies the boundary conditions on u (3.43) 

V" B = 0 (3.44) 

A and H are fixed by self-consistency. For example, setting ~ = 0 yields 

satisfied by 

V A + H = B x  (VxB) (3.45) 

H = B. VB (3.46) 

A = IBI2/2 (3.47) 

Dropping the x' dependence on the right-hand side of the modified (3.24) 
also yields a possible expression for, not ~45/6~(x'), but q~ itself (except for 
the case of homogeneous statistics). Again, the resulting statistics are (by 
construction) consistent with the boundary conditions as well as with 
stationary, incompressibility, and self-consistency. 

3.4. Inhornogeneous Steady Solution with Boundary 
Conditions 

For the unforced inhomogeneous case, the above may be simplified by 
returning to the velocity-vorticity characteristic functional (2.4), where 

3--~j : Gj H(x)-- dx' f(x')" [VH(x') + M(x')] (3.48) 
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V H +  M is chosen to be solenoidal and satisfy boundary conditions on u. 
Noting that 

vVZo = - v V x V x  o (3.49) 

the condition for stationarity becomes 

605 

[compare with (3.19)], implying 

Vx [M(x) x G'(z(x))] = 0  (3.51) 

where the prime denotes derivative of G with respect to its argument z(x) 
[given in parentheses in (3.48)], not to be confused with the "del" (V), 
which as usual denotes derivative with respect to x. Stationarity may then 
be achieved by choosing G' to be parallel to M, or more generally, for 

G "  VM - M" VG' + MV- G' - G 'V.  M = 0 (3.52) 

The longitudinal counterpart of (3.50) determines the steady-state pressure. 
An analogous result holds for the induction equation It1) in magneto- 
hydrodynamics. 

The requirement that the mean vorticity be the curl of a mean velocity 
can be satisfied only if 

Noting 

yields 

V . G = 0  at f = 0  

V . G = G " V H  

G ' = b •  

(3.53) 

(5.54) 

(3.55) 

for some vector field b. The spatial dependence of b may be determined by 
noting that solenoidality of vorticity requires 

V. 0nG(f = 0) = 0 (3.56) 
OH" 

Linearity of the Hopf equation allows us to generalize (3.48) to 

64 _ / i  �9 [VHq(x')q-Mq(x')]) (3.57) 

In general, we may write 

Gqj(Zq(X); f =  0) = ~ Aqj(p)e cp/v)m(') (3.58) 
P 
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where the Hq are bounded. Then (3.56) implies 

0 ----- p~Aq(p)'VHq(X) (3.59) 

which will be satisfied if VHq(X) lies in a plane for all x and the Aq(p) are 
normal to that plane for all p. 

The additivity of probabilities implied by the linearity of the Hopf 
equation suggests that (3.57) may be interpreted as a decomposition of the 
flow into statistically orthogonal (mutually exclusive) states. The vorticity 
associated with each state is arbitrarily aligned but uniaxial (i.e., different 
from state to state, but everywhere parallel or antiparalM within any given 
state). Of course, the sum over states yields a mean vorticity whose 
direction may vary in space, as is generally desired. The sum over states 
also implies that the correlation functions in general do not factor (unless 
there is only one Hq and each G w happens to be exponential in Hq). In 
other words, we have a true statistical solution rather than a deterministic 
solution; the vorticity associated with each state (and the mean vorticity) 
need not satisfy the curl of the Navier-Stokes equation. (For example, a set 
of Hq and Mq can be found that would correspond to a representation of 
the flow as an ensemble of vortex filaments of varying core diameters; the 
aq would then be given by the Bose distribution. (16)) This allows us to 
identify those coherent structures which characterize the ensemble, rather 
than particular realizations. (17~ 

Explicitly, (3.57) becomes 

cSgj(x) - ~ aqAqj(p) exp Hq(X) 
q,p 

implying 

-~- f dxt ipf(xt) ~ EVnq(Xt)Jff Mq(Xt)]) 

(3.60) 

(~j(x) ) = ~ aqAqj(p) exp (P Hq(x)) (3.61) 
q, P 

((Oj(X)bln(Xt)) ~- ~ aq PAqj(p) exp (P gq(x))[Vngq(x')+Mqn(X')] 
q,p 

(3.62) 

(r ogj,(x')) = ~ aqPv AqJ(p)exPlP Hq(X)] [VXmq]j,(x') (3.63) 
q, P 

etc. 

822/65/1-2-4 
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Velocity autocorrelation functions may be obtained by applying Biot- 
Savart to the velocity-vorticity correlation functions. Alternatively, we see 
that from (u(x)u(x ' ) ) ,  one may take the curl to find (3.62) and hence 
<u(x)" u(x')x r thereby effecting a closure for unforced 3D Navier- 
Stokes flow with arbitrary boundary conditions. 

Positivity of the energy spectrum implies that the Fourier transform of 
(3.63) with respect to x and x' must be nonnegative. This imposes a 
restriction on the coefficients aq appearing in (3.60). 

Symmetry under interchange of x, j and x', j '  implies 

If we denote 

P 

Bq(x) = VHq(x) + Mq(x) 

we find that 

(3.64) 

(3.65) 

W x Bq(X) = G ; (x )  (3.66) 

where the basis functions Bq(x) are solenoidal (which fixes VHq, given Mq) 
and satisfy the same boundary conditions as u. Note that ~q. Mq(X)= 
Cq" Bq(x), where the unit vector Cq is defined to be along Aq, with mutually 
perpendicular vectors ~q and qq. 

Hence~ given Bq, we can obtain G'q by invoking symmetry; the 
problem now becomes to find the coefficients aq (by using stationarity)so 
that we may write down expressions for the two-point moments, given one- 
point moments. The stationarity conditions may be written as 

V z - M q ( X )  = - V •  In IGql-Mq(x) (3.67) 

(q. V [ 0  q �9 Mq(x)] = (q. VE~q. Mq(X)] = 0 (3.68) 

where V• = (~q .V, ~q .V, 0). We can use (3.59) and the fact [from (3.64)] 
that V XMq(X) only has a (q component to deduce that Cq. Bq only 
depends upon (q while (q- Bq and Oq" Bq do not depend upon (q. In the 2D 
case, we obtain a generalization of (2.5). 

Changing variables to 

Ma(X) = M~ Gq(x)l 

we find that Eq. (3.67) becomes 

(3.69) 

V• M~ = 0 (3.70) 
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This implies that we may write 

~q" M~ = ~q'Vq0q, #q" M~(x) = -~q �9 Vq~q (3.71) 

for some q~q(~q, rlq). Substituting (3.70) and (3.71) into (3.64) then yields 

V2~q - V  In [G'qt . V ~ q  + IGtq{ 2 = 0 (3.72) 

Solving for q~q and using (3.69) and (3.71) then yields Mq(X). 
From (3.65) we obtain VHq, multiplying by G'q and integrating yields 

Gq. Given one-point moments, we may expand them in terms of Gq to 
obtain the coefficients aq, which finally may be substituted into (3.62) to 
give us the two-point moments. 

One drawback with this approach is that although the basis functions 
Bq with which we start may be orthogonal, the resulting G u in which we 
expand the one-point moments may not in general be orthogonal. Hence 
we approach the problem from the other end: given the one-point moment 
((gj(x) } (and its expansion coefficients aq in terms of orthogonal functions 
Gq), find the basis functions Bq and G'q so that we may write down two- 
point moments such as (~oj(x)u,(x')}. To do this, note that (3.69) and 
(3.71) may be written as 

(Bqi- ViHq) Vi((q " Gq) --  (Vl~q x Cq)i ViHq (3.73) 

(no sum over i). This may be solved to obtain 

[ (Wq • 
ViHq = Bqi L1 + (3.74) 

Vi((q 

while (3.66) becomes 

(q. {V• V,((q'Gq) (3.75) 
ViHq 

( i= ~q, l/q, no sum implied). Together with the solenoidality condition 

V. Bq(x) = 0 (3.76) 

we have three equations for the three unknown fields (~q'Bq)~ (?]q. Bq), 
and ~bq. Note that (Cq" Bq) is an arbitrary function of (q (it does not appear 
in either the stationarity or symmetry conditions) and is constrained only 
by the boundary conditions on (Cq-U(X)). Separation of variables then 
yields 

V• Ba(x) = const (3.77) 

The uniaxial decomposition reduces to an ordinary Fourier transform if Hq 
is linear in x (i.e., q-x); more generally, the (p/v)Hq may be chosen to be 
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the logarithms of a set of complete orthogonal functions suitable for 
decomposition of the mean vorticity. 

4. C O N C L U S I O N S  

We have reduced the stationary turbulence closure problem, given 
general boundary conditions (and presumably inhomogeneous statistics), 
to the problem of solving three coupled first-order nonlinear differential 
equations. This offers us an exact method for computing two- and higher- 
point moments, given one-point moments. Many examples remain to be 
worked out and tested against results from simulation studies. Work is 
underway on plane channel flow, Boussinesq and compressible flows and 
will be presented in forthcoming papers. 

We have also found closed solutions to the problem of homogeneous 
forced stationary turbulence. As an example, we have derived a solution 
exhibiting depletion of nonlinearity, not inconsistent with recent findings. 
These solutions, however, are less readily compared with experiments, due 
to the difficulty of computing force-force statistics from force-velocity 
statistics. One would have to solve the coupled equations ('8) for the 
velocity-force response function and the velocity-velocity correlation 
function, which may be nontrivial even if given the latter. 

We have also derived other, more specialized solutions to the 
stationary Hopf equation (e.g., in the presence of mean uniform shear, as 
well as operator or matrix solutions) whose physical significance, if any, 
remains to be clarified. Further intriguing longer-range questions include: 
(i) nonuniqueness (1~ of solutions, their selection mechanism and stability, 
(ii) the feasibility of inverse-functional Fourier transforming ~b to obtain 
the steady-state velocity probability density function (pdf) (which one 
certainly hopes will turn out to be positive), (iii) the possibility of incor- 
porating initial conditions and time dependence (to find two-time 
correlations), and (iv) the actual prediction (rather than assumption) of 
one-point statistics from the boundary conditions (by substituting the 
mean Reynolds stress, computed from the mean velocity, back into the 
mean of the stationary Navier-Stokes equation.) 

APPENDIX  

Explicit symmetrization of the correlation functions for the 
homogeneous forced case may be obtained by generalizing (3.22) to 

6<b foo 
- - ~  G m E z  , X] + dx' f/(x') ~(')~ o j m  ' , ' - ,  x t )  
,~fm ( X ) - + 

f= + d x '  d x  . . . . .  (2) ' x") fj(x ) fn(x ) g)nm(X, X, + "" (A1) 
--oo 
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We then impose 

= 1_ f a a j ( x ' )  
~!')(,, x') 2 L afro(x) o j m  % ' - ~  

g}~L(,,, v,  x"t 
1 [. 62Gj(x ') 62am(x) 

=3L6f,.(x)6f.(x") 2 6~(x') 3f.(x") 

6Gm(X)] 
afj(x') J,=,=~=0 

62G,,(x'') ] 

q 8f~(x---)) c~fj(-~')Jr=g=h=o 

(A2) 

(A2') 

etc. Correlation functions then become manifestly symmetric, e.g., 

<uAx) u.(x') up(x") > 

= ~ bmjb.mbmp 
m 

x {exp[ik., �9 (x + x" - 2x')] + exp[ikm " (x + x' - 2x ')]  

+ exp[ikm" (x '+  x " -  2x)] } (A3) 

More generally, �9 is invariant under transformations upon G of the form 

I ,SG,.(x)~ 

6~(x') afn(x")J 

Lafj(x ) 3f,,(x") 

[ -8Gm(x) 6F2'(x) 1 fSF2)(x)'~] 
~ _  6fj(x') § cSf2(x' ) 2 ~. ~ JA (A4) 

52F~)(x) 1~ 62F(m2)(x ) "~] (A4') 
+ 6Jj(x') 6f.(x") 3 [Sfj(x') 6f.(x")JJ 

etc., where the braces denote summation over all permutations of the 
position arguments (carrying the vector subscripts along with the corre- 
sponding arguments) and the F~)(x) are arbitrary functionals of f(x). 
Using (3.27), (3.29), and the orthogonality of bm and km, we find that a 
sufficient condition for stationarity (3.20), (3.21) is 

v~g)2 (x, x',...) = o (AS) 

which constrains the bm appearing in the correlation functions. Alter- 
natively, impose (A1) and (A2) with f's replaced by g's on both sides of 
the equations and G replaced by V x G. z is replaced by the original z 
plus a contribution ~ g. V x Mq. This manifestly satisfies stationarity and 
symmetry; self-consistency is imposed by defining velocity correlation 
functions via Biot-Savart. This also obviates the need for a subsidiary 
condition such as (A5). 
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